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FINITE THERMAL OSCILLATIONS OF THIN PLATES
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Abstract-A system of two-dimensional thermal equations of motion for anisotropic thin plates is obtained
from the non-linear three-dimensional oscillation theory of finite elasticity, by using the method based on
expansion of the displacement functions in terms of thickness coordinates and the variational method of
Kirchhoff. Non-linearity, based on geometric considerations is expressed by taking into account the angles of
rotation in the definition of strain tensor, while physical linearity is expressed by using Duhamel's law of
anisotropic thermoelasticity generalized to large deformations.

INTRODUCfION

IN THIS paper, equations governing the large flexural vibrations of anisotropic thin plates.
including rotatory inertia, shear deformation and temperature distribution are derived
from the point of view of the non-linear three-dimensional theory of finite elasticity.
Linear equations of equilibrium of an isotropic thin plate subjected to temperature
distribution 0 = O<°)+x2O<1) have been previously considered by Nadai [1]. Also, iso­
thermal theory of motion of anisotropic thin plates based on infinitesimal theory of
deformation has been considered by Voigt, Cauchy and Mindlin [2--4]. In the case of
large flexural displacements, the basic theory available in literature is due to F6ppl and
Karman [5, 6], who have considered only the isothermal equation of equilibrium of
isotropic, thin, elastic plates. The present paper, therefore, extends the work of F6ppl
and Karman to the case of anisotropic plates, with large amplitude of vibration, and
subjected to temperature distribution of the same form as considered by Nadai. In the
absence of temperature field, inertia forces, and shear deformation, these equations
reduce to the Karman equations of equilibrium of isotropic plates. If, in addition, the
extensional forces in the plane of the plate be considered constants, then these equations
degenerate to the equations of equilibrium under edge thrusts [7]. On the other hand,
by dropping only the thermal and the non-linear terms, Timoshenko beam or Mindlin
plate equations for isotropy or Mindlin plate equations for anisotropy are obtained from
these equations [8-10].

The system of two-dimensional equations of motion is obtained from the three­
dimensional non-linear theory of elasticity, by using the method based on series expan­
sion of the displacement functions in terms of the thickness coordinates and the variational
method of Kirchhoff [11]. No comparison is made with the exact theory, since the
frequency spectra of the exact non-linear theory is not known. However, judging from the
recent results in the linear theory of vibrations of thin plates [12], solutions of these
equations for bounded plates, should give better results over an extended range of
frequencies as compared to the results from the existing theories.
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THREE-DIMENSIONAL EQUATIONS

Using Cartesian system of coordinates and Lagrangian concept of strain, the strain
tensor Yij in terms of displacements Ui is given by the relation [12, 13]

Yij = eij+1(eki+ w ki)(ekj+wk), (1)

where

ek' = .!JUk ·+U· k) = e'k1 2\.1 1, I ,

In these equations, indices following a comma denote partial derivatives with respect
to Cartesian coordinates and every Latin index runs from 1 to 3. Greek indices, however
take the values 1 and 3 and are considered cyclic when they occur as 1,3 and anticyclic
as 3,1. Summation convention is implied everywhere, unless stated to the contrary, or
when indices are put within parentheses.

From the expression for strain it is easy to see the conditions under which the finite
strain tensor Yij can be identified with the linear expression eij' as is usually done in the
classical theory of elasticity. One can simplify these relations in two cases: (1) when the
displacements are small in comparison with the dimensions of the body and rotations are
small in comparison with unity, and (2) when the extensions and shears are both small in
comparison with unity. It may be noticed that case (1) is more restrictive since it implies
case (2), and is accepted generally in the classical theory of infinitesimal elasticity, where
Yij is identified with eij' However, case (2) does not imply case (1). When both extensions
and shears are small compared to unity, then products such as eklWkj, Wkiekj, or ekiekj

can be neglected in comparison with WkiWkj and the strain tensor can be simplified to [13]:

(2)

and is considered as the principal part of Lagrangian strain tensor. The expression for
strain components may be further simplified in special cases. In the case of thin plates,
which can be considered as rigid enough in its own plane, say (Xl> X3), the rotation W13

may be considered as negligibly small in comparison with the other two components [13].
When elongations and shears are both small compared to unity, the differences in

the dimensions of an elementary cube before and after deformation can be ignored.
This then allows us to refer the stresses, body forces, acceleration forces and mass density
to the initial area and volume of the element. This, therefore, implies that we take into
account only the rotation of the cube and ignore its deformation and thus consider
that the cube after deformation differs from its pre-deformed state only in its position in
space. The equations of equilibrium based on these approximations will, therefore, be
valid only for the case of small relative deformation and arbitrary rotations.

When the form of strain-energy ftinction W is known, the equations of motion and
boundary conditions may be deduced from Hamilton's principle [14], which states that

f
tt ftl

(j (T- V)dt+ (jOdt = O.
to to

(3)

This says that the variation ofthe integral of the Lagrangian function (T- V+ 0), between
times to and t 1, takes a stationary value, provided the variation of the displacement
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vector is taken in such a way that it vanishes at the times to and t l' Here T is the kinetic
energy, which is the volume integral of tPUIUi and Vis the potential energy of deformation
and hence the volume integral of strain energy }Y. Further, JO is the work done by the
body forces XI and surface forces}; when the displacement undergoes a variation JUl'
Following Love, it can then be shown that the variational equation takes the form

Iv [JW+P(Ui-XI)JUi] dV = fs};Ju; dS (4)

where dots represent differentiation with respect to time, and

JW = Ti~Yij' Tlj = ~(~~ +~~}
Since the principal part of JYij is not the same as the variation of the principal part

of Ylj, it is necessary to retain terms of the type eklwkj in the expression for Yij' Only then
is it possible to later reduce the equations to the case when both elongations and shears
are small compared to unity. Thus in the variational equation of motion we use

(5)

instead of equation (2). Then substituting (5) in (4), taking the variation with respect to
displacement UI, using divergence theorem, and rearranging the indices suitably through
proper use of summation convention, leads to the variational equation

L[(Tij+ WlkTkj+!eikTkj-tejkTkit+ pXI- PU;)JUi dV

= Is [ViTij+WikTkj+!elkTkj-!ejkTkl)- };]JUj dS. (6)

For infinitesimal strains, the quantiti~ eU,Tkj and ejkTki are of the same order of smallness
and can be neglected in comparison with WikTkj' This then leads to the simpler equations

t [(Tij +WlkTkj).j +pXI- PU;)JUI dV = Is [viTIj+WlkTk)- };]JUI dS. (7)

Now the coefficients of the variation JUI under the integral sign must vanish separately
over the surface S and also at all points in the interior of the volume V, since the variation
JUI is quite arbitrary. We thus get the three non-linear equations of motion

(Tlj+WlkTkj).j+PXi = PUi

and three conditions on the surface

(Tij+WikTkj)Vj = };

where vj = cos(v, Xj); v being the outward drawn normal to the surface S.

(8a)

(8b)

PLATE EQUATIONS OF EQUILmRIUM

We now develop the two~dimensional counterpart of the three~dimensional equations
of motion of a thin plate of constant thickness h and mass density p, and bounded by a
smooth closed contour and parallel plane faces. The middle plane is defined by XCX3

axis and the normal to the face lies parallel to xz. Since the thickness of the plate is small
compared to the other dimensions, we develop the displacement function "i in powers of
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thickness coordinate X2' We thus write
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n

n

n

(9a)

(9b)

(9c)

and use the variational equation (7) to eliminate the dependence of the thickness co­
ordinate X 2, which is now explicitly contained in the integrands.

Substituting the power expansions (9) in the volume integral in (7), carrying out the
process of integration with respect to X 2, and then setting in the area integral, the co­
efficients of the variation buln

) equal to zero, we obtain the n-triplets of differential equa­
tions:

[T!nl + "m\mIT(m+nl] _n[T!n-ll+" m\mIT(m+n-l)]/(, L. ,k b,~ 12 L. Ik k2

where

m m

+ [GI'2+ LmlkIG~1+nl)+pXl") = p LBmllulml (10)
m m

G\'2 = [x'iri2f'~~/2 = (h/2)"[rd+h/2+(-1)"+1 ri21-h/z),

f
hJ2

Xlnl = x'iX i dX2'
• -hJ2

(h/2)m+n+ 1

Bmn = 1·-[1+ cos(m+n)n);m,n = 0,1,2, ....
m+n+

Similarly from the surface integral in (7), after substituting the power expansions (9),
conducting the process of integration with respect to X2' and then setting in the resulting
contour integral the coefficients of the variation bui") equal to zero, we obtain

};(A) = GI'2+ LmlkIG~i+lI) (lla)
m

on the plane parallel faces of the plate, and

lies) = v~[Tl:1 + L mlkIT~+III)
m

(lib)

on the closed contour bounding the plate. Here v~ = saP iJxp/iJs where saP is the alternating
surface tensor.

The two-dimensional stress equations of motion and the boundary conditions of
various orders are then written as:

(a) Zero-order equations, (n = 0)

[Tl~l+ LmlkIT~~IL+[Glgl+ LmlrIGl11]+pXlol = p LBmoUlm l, (12a)
m m

m

I'.(s) = v [TiOI + "m(mIT(ml]Ji a la L. ik ka'
m

m

(12b)

(12c)
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(b) First-order equations, (n = 1)

[T(ll+ ~ ,,,(...).,..,(m+1)] [.,..,(0)+ ~ ,",,(mlT(llIl]+[G(1l+ ~ ",(mlG(m+1)]+pXi1l = p~ B u,!ml
if< L. "'ilt 1 ita ,a - 1 /2 L. "'ilt k2 i2 L. "'ilt k2 , L. m1' ,

m m m m

};(A) = GW+ Lrolr)G~i+1l,
...

f.{s) = v,,[TI~l+ Lwlk'ln,:+1l],
m

and so on for n = 2,3,4, ....

STRAIN DISPLACEMENT RELATIONS

(13a)

(13b)

(l3c)

In order to be able to express the stress equations of motion in terms of displacement
components, we need the development of yljl and roljl in terms of displacement com­
ponents ulnl. Then from equations (2) and (9), we obtain

Y _ ~ xn {e(nl + 1 "x...",(n)",(...)} _ "xn y(n)
i} - L. 2 ij "! L. 2 ""'lti ""'It} - L. 2 i}'

n m n

The nth-order strain component y!jl is then defined as

n

Y(nl _ {e(nl+~ " ",(n-mlm(ml}
ij - ij .. L. ""'ki ""'It},

m=O

where

and delta with superscripts is a hybrid isotropic tensor [15].

STRESS DISPLACEMENT RELATIONS

(14a)

(14b)

(14c)

When the material of the plate is anisotropic, and e the change in temperature, the
Duhamel's thermoelastic stress-strain relations generalized for large deformations are
given by [16]t

(15)

where

CUkl = Cklij = Cjikl

Pkl = t((Xkl+alk)'

The coefficients Cijk/ are the isothermal elastic coefficients of the anisotropic material
and it is assumed that the temperature change is very small. The coefficients OCkl characteriz­
ing the thermal expansion are tensors of second rank. In the case of isotropic material

t For some critical remarks, see a paper by J. N.. Goodier, Phil. Mag. 23, 1017-32 (1937).
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we find that
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f3kl = OC{)kl = f3'k'

Cijkl = A{)ij{)kl + J.L({)ik{)j/ + ()i/{)jk) = Cklij = Cjikl'

where oc is the coefficient of linear thermal expansion. The corresponding stress-strain
relations are

'ij = A(Ykk- 3ocO){)ij+2J.L(Yij-OCO{)i) (16)

where A and J.L are Lame's constants of infinitesimal elasticity and are related to each
other through the relation AjJ.L = 2vj(l- 2v); J.L > 0; (3A + 2J.L) > 0; and v is Poisson's
ratio of the material.

Now using the stress-str~in relations (15) or (16), expressing Yij in terms ofy\j) by using
equation (9b), and using the definition of T\j), we obtain after integrating with respect to
the thickness coordinate x 2 , the nth-order stress-strain relations

T!j} = Cijkl L BmnMi) - o(m)f3kl)
m

for general anisotropic media, and

T~j) = L Bmn[AM'k) - 3oco(m»{)ij+ 2J.L(y\j) - OC(J<m){)i)]
m

for isotropic media, where

m

(hj2)m+n+ 1

Bmn = ( 1) [1 +cos(m+n)1t]; m, n = 0,1,2, ....
m+n+ .

(17a)

(17b)

INTERMEDIATE ORDER EQUATIONS

We will now specialize the general equations to the case when the displacement and
temperature field is taken in the form

0= O(O)+X20(1).

Then the only strain components entering in the theory are

Y!?) = e!O)+*wtl?)wt~)
lJ 1) 4. ",I "'1

Y(ll _ e(l)+.!Iw(l}w(O)+w(O)w(ll)ij - ij 2\ ki kj ki kj

where from (18a) and (14b, c)

(18a)

(18b)

(19a)

(19b)

2e~oJ = (u~~~ + u~~i);

2e(Ol = (dO) +d ll).
23 2.3 3'

2ei°i. = (U~~)l + u~1);

2w~OJ = (ui~~ - u~~i);

2w~oJ = (u~~~ _U~l»;

2wi°i. = (u~~ll - uil»;

(20)
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2eo(1} - (U(l) -u(1})·
13 - 1.3 3.1'

2eW = u~~i = 2eoW·

e(1} - u(1} • e(21} = 0',
11- 1.1' :2

2e(t} = (u(t) +u(l})·
13 1.3 3.1'

2eW = u~~~ = 2eoW;

e(l} - u(1} •
33 - 3.3'

(21)

For frequencies less than the thickness shear mode it is expedient to neglect the thick­
ness stretch displacements U~l}. However, for free development of Poisson's effect through
the thickness, the strain components 'Y~I and YW, which are functions of u~t} and its
partial derivatives, cannot be suppressed. In order that these strains may develop freely,
it is necessary that the corresponding stress resultants T~ol and stress couples TW must
vanish. These conditions can thus be used to eliminate the component ulf} without
actually suppressing its influence.

From equations (17) and (19), and the definition of Bmll, the zero-order stress resultant
is given by

T\J} = hCijlt,M?} - (j(O}Pkl)'

The condition T~ol = 0 permits the elimination of ('Y~ol-l1°}P22) from
stress resultants, with the result

T (O} - h «O) (j(O)P)
ij - gijkl Yltl - Itl

where gijkl = gltlij = gjikl and in terms of elastic constants Cijkl

(22)

the zero-order

(23a)

(23b)gijkl = Cijkl- Cij22C22kl : C222 2'

In the case of isotropic medium, equation (23a) reduces to

T\J} = (1 ~EV2)[{ vy~~}-~(}(O}(l + v)}(b,j-t5i2bj2)+(1- v)(yIJ)-y~Ol£5i2£5j2)J (23c)

where 'Y~) = y\ol + y~Oj.

Similarly, first-order stress couple containing linear variation of temperature (J<1l is
given by

T (t) _ h
3

«(1) D(l}P)
ij - 12Cijkl 'Ylel - U Itl (24)

where the first-order strain components are as in (19b). In order to allow free development
of thickness strains 'YW, we now set TW = 0, and use these three equations to determine
YW, which are then used in equation (24) to obtain the stress-strain relations between
the remaining components T~~) and 'YW This process of elimination thus finally leads to
the result:

where

T (l} _ h
3

II «(l) D(l}P)
ij - 12 ijlel Ylel - U kl

IIijkl = dijkl-dij12d12kl : d1212,

d ijkl = gijkl- gij23g23kl : g2323'

(25a)

(25b)
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(26)

From equation (25b) we note that IT/ jkl = ITklij = IT j/kl and IT/j22 = IT/ j23 = IT/j21 = O.
Therefore, TW are zero and yW are eliminated from the remaining three equations of
stress-couples. Effectively we are, therefore, left with the relation

T(l) - h
3
n «1) _ 0(1)f3 )

~{J - 12 ~(Jt1p Yt1p . t1p

where IT~Pt1P are obtained from IT jjkl by replacing the subscripts ijkl by rxf3ap.
The elimination process is not yet complete because u~l,i and U~l,~ enter in Y~~ through

W~lJ. But we note from (21) that W~l) = eW. According to our original hypothesis terms
of the type e~l)w~OJ, w~O)e~lJ can be neglected in comparison with products of rotation, and
therefore from (19b), we can write

(27a)

which is equivalent to

(27b)

The first-order stress-couples in terms of strain-components therefore hike the form;

T(l) _ h
3

IT «1) 0(l)f3 ) (28a)
~{J - 12 ~Pt1p Yt1p - t1p,

IT~{Jt1P = d~{Jt1P-dI1.P12d12t1p ; d1212,

d~Pt1P = g~{Jt1p - g~{J23g23t1p : g2323'

(28b)

(28c)

(28d)

(28e)

For the case of isotropic medium, ITI1.{Jt1P = g~{Jt1P (isotropic) and using the property of
fourth rank isotropic tensors, we find

h3E
T(1) = [{ve(1)+(I+v)(w(1)w(O)-rxO(l»}{) +(I-v)e(1)] (28f)

11.{J 12(1- v2) pp 31 31 11.{J ~(J

where e~~) is the areal dilation of first order. In the case of orthotropy ITI1.Pt1P = gl1.{Jt1p'
The incorrect distribution of displacements assumed in the series expansion (18),

affect the frequencies mainly through the thickness-shear strains (y~Oj - 0(0)f3 :?'11.). In order
to adjust the thickness-shear frequencies to their correct value, and also to compensate
for the other higher-order terms which have been neglected in the theory, the thickness­
shear strains (y~OI-e<°)f321) and (y~01-e<°)f323) are replaced by k(1k'l~ol-e<°)f321) and
k(3ly~01-e<°)f323) respectively. Thus writing (yIJ)-()(O)f3/ j) = k~+j:"2)(iIJ)-e<°)f3/j)' in the
zero-order strain-energy density of the plate, and noting' that T!J) = !(8W(0)/oy!Jl

+ oW(O)/oy}?», we find that when shear correction is taken into account, the zero-order
resultants take the form [10];

where

T (O) - h * «0) IliO)f3)
/j - g/jkl Ykl - {7' kl , (29)
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m = cos2(ijn/2); n = cos2(kln/2),

and no summation is implied over parenthetic subscripts.
In the theory developed so far we have assumed that elongations and shear are

negligible compared to unity, and we have imposed no restriction on the magnitude of
the rotations. When the rotations of the elements of the plate are also small, compared
to unity, further simplification can be achieved in the strain-displacement relations.t It
has been shown by Novozhilov that in this case the derivatives u~?~ and u~?b can be
regarded as quantities of the same order of magnitude as ')I~~) and ')I~W [13]. This then
permjts us to drop all non-linear terms involving derivatives of u~O), in the strain compo­
nents ')IIJ) and ')I~1) defined by equations (19a) and (28b). With this additional approximation,
the strain displacement relations take the form:

and

')1(0) - e(O) +w(O)w(O)
~p - ~p 2 2~ 2P,

')1 (0) = e(O) = lJu(O) +di))
2a: 2a 2\ 2,Gl a'

')1(1) = e(l) = lid1) +U(1»)
~ ~ ~ ~P p~,

(30a)

(30b)

(3Oc)

e(O) = liU(O) +dO»)
~p 2\ ~,p p,~ , w(O) = *(U(O) - U(1»)

2a J. 2,1% a·

Now it is not difficult to verify that the six components e~nJ for n = 0,1 and the two
components e~Oj, satisfy the relations

.!~2l7~{ (n) + (n) _ (n) _ (n) } - 0
4U 2Pp e~p ,l7p el7p,~p el7p,~p e~p,l7p - ,

1 ~2i~{ (1) (0) (0) (1) } - 0
4Upjp e~p,p+e2p,~p-e2P,~-e~p,p - ,

(31a)

(31b)

where b::: is the generalized Kronecker delta, completely asymmetric in subscripts and
superscripts. Using equation (30a) in (31a), it can then be shown that the strain compo­
nents ')I~~) satisfy the relation

b~:iH')I~~)'l7P +')I~Oj,~p -')I~~~up - ')I~~,~p} = 2b:p(w~Ojw~oJ)'l7P' (32a)

In the particular case when shear deformation is neglected, u~l) = - u~~~, and the equation
takes the form:

o:/H ')I~~~l7P+ ')I~Oj,~p - ')I~~~up - ')I~~,~p} = 2bp~u~~~punp

where bp~ = (b~pol7P - b~A,p).

STRESS AND DISPLACEMENT EQUATIONS

(32b)

(33a)

(33b)

When T(O) = O' T(n) = 0 for n > O' T\~) = 0 for n > l' {j(l) = O' u(n) = 0 l'or n > l'
22 '2J ' 'J ,2, J .' ,

w~~ ~ 0 for n > 0; w~J ~ 1 for n ~ 0; and the only non-zero mean rotations are w~Oj,

the stress equations of motion (12) and (13) take the form:

{ T(O) +w(O)T(O)} + G(O)+ pX(O) = phi,j<O)
~p ~2 2 P ,p 2~ ~ ~

{ T(O)+w(O)T(O)} +G(O)+pX(O) = phu(O)2P 2~ ~p ,p 22 2 2 ,

t Smallness of strains and rotations in comparison with unity does not imply that they are of the same order
of magnitude.

8
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(33c)

(35c)

(35a)

(35b)

In these equations we have neglected the projected components on the plane of the
plate of the surface loads G~~) and surface moments GW. The surface loads and the surface
moments are given by the relations

Gl~) = (h/2)"{td'h/l-( -1)"ti2L h/,}·

From these equations the body forces like X~O) and X~I) can be neglected and equation
(32b) can be combined with equation (36c) with the result:

{T~~)+ W~~)r<20J},p + G~Oj = phii~O), (34a)

{T(ll +W(O)TOl} +G(O)+G(I) +pX(O) = ph(ii(O)+ h
2

ii(ll) (34b)
/11M 2« «/1./1 22 2/1./1 2 \ 2 12 /1./1 .

The first set of two equations (34a) describe the extensional motion of the plate in its
own plane, and the third equation (34b) describes the flexural motion with rotatory
inertia included.

For anisotropic medium

Tlz°J= hg!/lap(Y~Oj - (10)Pap)+ 2hg!/l2a(e~Oj - (10)P2a),

T (O) - h. (0) 1lI0)P ) 2h. (0) 1lI0)P )«/I - g «/lap Y"p -{,. ap + g «/l2a e2a -(]' 2a'

T(I) h3 n ((I) IlIl)p )
«/I = 12 «/lap eap - (]. ap ,

and for isotropic medium these relations reduce to

T<;'J = 2Jlhk~AOJ,

T~~) = 2jlh(l- V)-I[{ vy~Oj-lX(l+ v)f1°)}c5«/1+(l- v)y~)],

T~~) = !Jlh 3(l- v)- I[{ ve~~I-lX(1+ v)f1 I l}c5«/I +(1 - v)eWJ.

(36a)

(36b)

(36c)

(37a)

(37b)

In the case of orthotropic medium n«l1ap = g~l1ap = g«/lap and g~112a is zero and the corres­
ponding stress-strain relations can be easily written from the set of relations (35). The
strain tensors entering in these relations is defined in terms of displacements in (30).

In the case of low-frequency flexural vibrations, it is generally sufficient to neglect
extensional inertia ii~O) and linearize the equation by dropping the term w~OfT~~ in com­
parison with T~°J. In the absence of body force X~O) and surface loads G~o;, it is easy to
introduce a stress function T~~l = c5"f"t/J.ap which satisfies the equation T~~~/I = 0 identically.
In terms of stress function 4J and displacements u~O); u~l), the remaining three equations
(33 b, c), in the case of orthotropy take the form:

~.I. ~~(u(O) -u(1)) +hg. ./, +G(O)+pX(Ol = phii(O)Z'I',ap afJ\ 2.« «./1 2fJ2«'I' «./1 22 2 2 ,

h
3

(I) P (11» h'" ./, G(I) X(I) _ h
3

..(I)
12g«l1ap Ua.p«- ap .« - g.2/1.2«'I'«+ 211+P /I - P 12 U/I '

where 1/1« = (u~~~+u~I)-2P.2«O<°), and for orthotropy g1fJ2« = k(fJ)c211«2k(<<). These three
equations contain four unknowns and to obtain the fourth equation we use the identity
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(39)

(32a) by expressing the strain components y~~) in terms of the stress function 4>. For an
orthotropic medium, the scalar invariant 4> and the strain components 'Y~W are related
to each other through the relation

h'Y~W = h(jO)f3a;p+Ca;(Japo~~4>,;", (38)

where Ca;(Jtrp = Ga;(Jap: Iga;(Jtrpl; and Ga;{itrp is the cofactor of gtrpa;p in the determinant ga;{itrp,
so that for inner product of symmetric tensors, ga;{iapCtrPAp. = ~Oa;AO{ip.+ba;p.b{iA) = ba;Ab(Jp.'
Now introducing (38) in the left hand side of equation (32a), it can be shown through
proper permutation of the dummy indices that

~b2a;tr{ (0) + (0) _ (0) _ (0) } _ Ma;tr(j0)f3 +C ba;aorcAA..4 2p{i 'Ya;(J,trp 'Ytrp,a;{i 'Ya;p,a(J 'Ya{i,a;p - pp ,ap a;{i' a;{ilCv p(J VP.'I',trpAp.'

(37c)

Then the remaining equation which together with equations (37a, b) constitutes
complete system of four simultaneous equations in four unknowns, is given by

~a.P{C ~/().A.. hf3 1lI0) h[( (0) (1»( (0) (l»]} - 0Ua{i a;{i"vUvp.'I',apAp.+ a;prJ;trp- '8 U2,a;-Ua; U2,P-Up ,I1P -

the

shear

(40a)

(40b)

where

These four equations for large flexural motion of thin orthotropic plates can be easily
reduced to the case when the plate is isotropic. For it can be shown that in the case of
isotropy the various constants entering in the system of equations (37) are:

g1{ia;2f32a. = 0,

ga.{iap{3ap = 2tX(A' + J.l)ba;(J'

Iga;(Japl = 16J.l2E(A +J.l)/(A +2J.l),

G llll = G1133+2G1313 = G3333 = 16J.l2(A+J.l)/(A+2,u),

C llll = C1133+2C1313 = C 3333 = liE,

C ll13 = C l333 = 0; G
lll3 = Gl333 = 0,

ga;{iap = A.'CJa;pCJap + J.l(CJa;trCJpp +CJa;pCJpa),

d{ia2 = J.lk({i)bpak(tr)'

A' = 2J.lAI(A+2J.l); (A'+J.l) = ,u(l+v)/(l-v); E = 2,u(l+v),

The four simultaneous equations, for the case of isotropy, containing both
correction and rotatory inertia, then reduce to the form:

II'h(u(O)+u(l) +J..A.. opa;(u(O) _u(l) +G(O)+pX(O) = phii(O)r 2,{i {i,p ~'I',ap a(J 2,a; a;,(J 22 2 2 ,

h3 h3
-("U(1)+.il"u(l» - II'h(u(O) +u(l)-kh3.il"9(1)+G(1)+pX(l) = p-u(l)12 r {i,a a;,p,a. r 2,{i p 0- ,{i 2{i {i 12 p ,

4> (i (i+tXhE9(0)--lhECJ IZP {(u(0) -U(l)(U(O) -U(1»} = 0,a; a; ,rzrz" {ia 2,a; a; 2,p. P ,ap ,

h 1" 1/ • I k2were I\, = I\, +,u,,u = ,u ({i)'

(40c)
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(41a)

(43a)

(43b)

At extremely low frequencies, it is permissible to neglect shear deformation from the
equations of motion. This then permits us to write

u(l) = _u(O) == -w
CL 2,a ,CL

where we have in accordance with the standard notation replaced the transverse dis­
placement u~Ol by w. Then in the case of orthotropy, when shear deformation is neglected,
the large deflection equations of motion, in the presence of thermal field, take the form

h
3

( h
2

)
12gIXPo)w,,,p +p"pe(l)),IXP-w,IXP~P~cf>,,,p +ph \w- 12 w,PP = F2'

where F 2 = G~Od+GW.P+p(X~Ol+ X~~1). In the case of isotropy,

D(w.pp + 1X(1 +v)e(1l)'IXIX-W'IXP~P~cf>,,,p+Ph(W- ;~ w,pp) = F 2 , (42a)

cf>'IXP<XP+lXhEe~~~-!hE~~~w,IXPw,,,p = 0, (42b)

where the flexural rigidity D = Eh3/12(1 - v2
). The solution of these non-linear equations

of motion require that these be solved simultaneously for wand cf>. Once wand cf> are
determined, the extensional displacements can be determin,ed from the relations

~)_~) '~_1helXp - he PIXP + CIXP"P~PI'cf>,AI' zhw,lXw.p

in the case of orthotropy, or

he;~) = IXhe(Ol~IXP + 2~ [~P~cf>,,,p - 1: v cf>'PP~IXPJ -!hw,lXw,p

in the ca'se of isotropy. Further, once cf> is known, the planar stress field can be easily
determined in each case from the relation T;~ = ~p~cf>,<TP"

The equations of static equilibrium can be easily obtained from these equations of
motion by dropping the inertia terms. Then equation (37) yields the equation of equi­
librium of finite deflection of orthotropic plates and equation (40) gives the equation of
equilibrium of isotropic plates; both containing shear correction. If on the other hand,
shear correction be neglected, and also inertia terms dropped, then equation (41) yields
the equation of equilibrium for large deflection of orthotropic thin plates, and equation
{42) gives the corresponding equation for isotropic plates. It may be noticed that the
effect of neglecting the shear deformation results in considerable simplicity and requires
only the solution of two simultaneous equations instead of four as in equation (37) on
equation (40). It is not difficult to recognize, that if we also drop thermal distribution
from equation (42), then we are led to Foppl-Karman equations of equilibrium of finite
deflection of large thin isotropic plates, [5, 6, 14]. Under similar conditions, our equation
(41) is a generalization of Foppl-Karman equation 'for orthotropic plates. Both these
equations are special cases of general equations (37) and (40), for orthotropy or isotropy,
containing shear correction and allowing for a thermal field, rotatory inertia and flexural
motion. The correction factors k(pl have the same meaning as those used by Mindlin [10].

Concerning the system of equations (37), it can be seen that we require initial values
of u~o>, U;l), cf> and of u~O), u;l), ¢. In addition to the initial values, we find from the second
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of equations (12) and (13), that at every point on the two surfaces of the plate, either
surface forces or surface displacements be specified from each of the following three
pairs

or u~o); G(O)
22

Furthermore, the third of equations (12) and (13) show that the system of partial
differential equations to be solved is subject tt> the following edge conditions

f~O)(s) = vpT~o; or u~O) = u~O)(s),

f~O)(s) = vp(T~oJ+ (J)~OjT~~») or u~O) = u~O)(s),

f~1)(s) = vpTW or u~1) = U~l)(S),

where the displacements U!Ol(s), U~1)(s) and the components of the applied forcesf!Ol(s) ds
and applied moments f~1)(s) ds, are known functions of arc parameter s of the bounding
curve C.

Writing vp = f.py dXy/ds; T~~) = bp~4>,qp it follows that

or 4>,p = f.a.P rS

f~O)(s) ds == g(s).
JSo

Thus in terms of stress function, 4>,p must be a known function of s. In fact knowledge
of 4>,p(s) permits one to determine the values of 4>(s) and its normal derivative on C.
It is understood throughout that when the region is multiply connected, the boundaries
C consist of (n + 1) simple and smooth curves Ci with C = Cn+ 1 +C 1 + ... +Cn'
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ZusammeDfassung-Mit Hilfe der nichtlinearen, dreidimensionalen Schwingungstheorie flir die endliche
Elastizitlit wird fUr anisotrope, diinne Platten ein zweidimensionales Wlirme-und Bewegungsgleichungs­
system abgeleitet. Dabei verwendet man die variationsrechnerische Kirchhoff''sche Methode und eine andere
Methode, welche sich auf die in Dickekoordinaten ausgedriickte Entwicklung der Verschiebefunktionen
griindet. Die Nichtlinearitlit wird auf der Grundlage geometrischer Erwligungen ausgedriickt, indem man bei
der Definition der Spannungstensoren die Drehwinkel in Betracht zieht, wlihrend man die physikalische
Linearitlit mit Hilfe des auf grosse Deformationen verallgemeinerten Duhamel'schen Gestzes der anisotropen
Thermoeleastizitlit ausdriickt.

AOCTpllKT--eHcTeMa ,UByxMepm.IX TepMH'iecKHX ypaBHeHHil: ABHlKeHWl )J.JIJI HeH30Tp0nHblX TOHKHX IIJIaCTHH,

norry'iaeTCJI H3 HeJIHHeil:Hoil: TpeXMepHoil: KOJIe6areJIbHoil: TeopHH KOHe'iHoD: ynpyrocTH, npHMeHeHHeM

MeTO)l.OB OCHOBaHHblX Ha pa3JIOlKeHHH .pYHK~Hil: CMew;eHHJI B ycnOBHJlX KOOp)l.HHaT TOJIIIJ;HHbI, a TaKlKe

BapH~HOHHoroMeTO,lla I<l{pxro.p.pa.

HeJIHHeil:HoCTb, OCHOBaHHaJi Ha reOMeTpH'iecKHx co06palKeHHJIX, BbrpaJKaerCJI TeM, 'iTO npHHHMalOTCJI

BO BHHMaHHe yrJIbI Bpaw;eHWl B onpe)l.eJIeHHH TeH30pa Ae.popM~H,B TO BpeMli KaK .pH3H'iecKaJl JIHHeD:­

HOCTb BbIpaJKaeTCJI npHMeHeHHeM 3aKOHa AlOraMeJIli 06 HeH30TponHoil: TepMOJJIaCTH'iHOCTH 0606w;eHHoil:

)J.JI1i 60JIbmHX )l.ecPopMa~Hil:.


