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Abstract—A system of two-dimensional thermal equations of motion for anisotropic thin plates is obtained
from the non-linear three-dimensional oscillation theory of finite elasticity, by using the method based on
expansion of the displacement functions in terms of thickness coordinates and the variational method of
Kirchhoff. Non-linearity, based on geometric considerations is expressed by taking into account the angles of
rotation in the definition of strain tensor, while physical linearity is expressed by using Duhamel’s law of
anisotropic thermoelasticity generalized to large deformations.

INTRODUCTION

IN THIS paper, equations governing the large flexural vibrations of anisotropic thin plates,
including rotatory inertia, shear deformation and temperature distribution are derived
from the point of view of the non-linear three-dimensional theory of finite elasticity.
Linear equations of equilibrium of an isotropic thin plate subjected to temperature
distribution 8 = 8%+ x,0") have been previously considered by Nédai[1]. Also, iso-
thermal theory of motion of anisotropic thin plates based on infinitesimal theory of
deformation has been considered by Voigt, Cauchy and Mindlin [2-4]. In the case of
large flexural displacements, the basic theory available in literature is due to Foppl and
Karmidn [5, 6], who have considered only the isothermal equation of equilibrium of
isotropic, thin, elastic plates. The present paper, therefore, extends the work of Foppl
and Kiarman to the case of anisotropic plates, with large amplitude of vibration, and
subjected to temperature distribution of the same form as considered by Nadai. In the
absence of temperature field, inertia forces, and shear deformation, these equations
reduce to the Karman equations of equilibrium of isotropic plates. If, in addition, the
extensional forces in the plane of the plate be considered constants, then these equations
degenerate to the equations of equilibrium under edge thrusts[7]. On the other hand,
by dropping only the thermal and the non-linear terms, Timoshenko beam or Mindlin
plate equations for isotropy or Mindlin plate equations for anisotropy are obtained from
these equations [8-10].

The system of two-dimensional equations of motion is obtained from the three-
dimensional non-linear theory of elasticity, by using the method based on series expan-
sion of the displacement functions in terms of the thickness coordinates and the variational
method of Kirchhoff [11]. No comparison is made with the exact theory, since the
frequency spectra of the exact non-linear theory is not known. However, judging from the
recent results in the linear theory of vibrations of thin plates[12], solutions of these
equations for bounded plates, should give better results over an extended range of
frequencies as compared to the results from the existing theories.
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THREE-DIMENSIONAL EQUATIONS

Using Cartesian system of coordinates and Lagrangian concept of strain, the strain
tensor y;; in terms of displacements ; is given by the relation [12, 13]

Vi = ey+Hew+wp) (e + o), (1)
where
e = 3ty i+u,) = ey,
Wy = %(uk,i_ui,k) = — Wi

In these equations, indices following a comma denote partial derivatives with respect
to Cartesian coordinates and every Latin index runs from 1 to 3. Greek indices, however
take the values 1 and 3 and are considered cyclic when they occur as 1,3 and anticyclic
as 3,1. Summation convention is implied everywhere, unless stated to the contrary, or
when indices are put within parentheses.

From the expression for strain it is easy to see the conditions under which the finite
strain tensor y;; can be identified with the linear expression ¢;;, as is usually done in the
classical theory of elasticity. One can simplify these relations in two cases: (1) when the
displacements are small in comparison with the dimensions of the body and rotations are
small in comparison with unity, and (2) when the extensions and shears are both small in
comparison with unity. It may be noticed that case (1) is more restrictive since it implies
case (2), and is accepted generally in the classical theory of infinitesimal elasticity, where
7;; is identified with e;;. However, case (2) does not imply case (1). When both extensions
and shears are small compared to unity, then products such as e,wy;, wyey;, Or eyey;
can be neglected in comparison with wy;w,; and the strain tensor can be simplified to [13]:

Yij ~ eij+%wkiwkj’ @)

and is considered as the principal part of Lagrangian strain tensor. The expression for
strain components may be further simplified in special cases. In the case of thin plates,
which can be considered as rigid enough in its own plane, say (x;, x3), the rotation w,;
may be considered as negligibly small in comparison with the other two components [13].

When elongations and shears are both small compared to unity, the differences in
the dimensions of an elementary cube before and after deformation can be ignored.
This then allows us to refer the stresses, body forces, acceleration forces and mass density
to the initial area and volume of the element. This, therefore, implies that we take into
account only the rotation of the cube and ignore its deformation and thus consider
that the cube after deformation differs from its pre-deformed state only in its position in
space. The equations of equilibrium based on these approximations will, therefore, be
valid only for the case of small relative deformation and arbitrary rotations.

When the form of strain-energy function W is known, the equations of motion and
boundary conditions may be deduced from Hamilton’s principle [14], which states that

5]' (T—V)dt+ 5Qdt = 0. 3)

This says that the variation of the integral of the Lagrangian function (T— V +Q), between
times t, and t;, takes a stationary value, provided the variation of the displacement
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vector is taken in such a way that it vanishes at the times t, and t,. Here T'is the kinetic
energy, which is the volume integral of Jpi, and Vis the potential energy of deformation
and hence the volume integral of strain energy W. Further, 6Q is the work done by the
body forces X; and surface forces f; when the displacement undergoes a variation du;.
Following Love, it can then be shown that the variational equation takes the form

| 16w+ pta,—X)su)av = | fou,ds @)
v S

where dots represent differentiation with respect to time, and
1/oW oW

W = 1,87, Ty =o|le—t—7)

W 2(‘7%1 " 5in)

Since the principal part of dy;; is not the same as the variation of the principal part
of ;;, it is necessary to retain terms of the type e,w,; in the expression for y;; Only then
is it possible to later reduce the equations to the case when both elongations and shears
are small compared to unity. Thus in the variational equation of motion we use

Vij = €15+ HenWy;+ € j0r+ Opy;) (5)

instead of equation (2). Then substituting (5) in (4), taking the variation with respect to
displacement u;, using divergence theorem, and rearranging the indices suitably through
proper use of summation convention, leads to the variational equation

jy [(zij4 wuti; + enty j '—%ej,,t,‘,)' i+ p X, — pii;}6ii, AV
= js [VJ(Ti j+w;k‘tkj+117€ikt,‘ j —3e ki) — fi)6u; ds. (6)

For infinitesimal strains, the quantities e;,7,; and e, are of the same order of smallness
and can be neglected in comparison with w;1,;. This then leads to the simpler equations

L [(zi;+ oty j+ p X — pidJ0u; dV = fs [T+ wutyy) — f:10u; dS. @)

Now the coefficients of the variation du; under the integral sign must vanish separately
over the surface § and also at all points in the interior of the volume ¥ since the variation
du; is quite arbitrary. We thus get the three non-linear equations of motion

(tij+ outy)) j+ pX; = pi; (8a)
and three conditions on the surface
(tj+outv; = f; (8b)
where v; = cos(v, x;); v being the outward drawn normal to the surface S.

PLATE EQUATIONS OF EQUILIBRIUM

We now develop the two-dimensional counterpart of the three-dimensional equations
of motion of a thin plate of constant thickness 4 and mass density p, and bounded by a
smooth closed contour and parallel plane faces. The middle plane is defined by x;-x,
axis and the normal to the face lies parallel to x,. Since the thickness of the plate is small
compared to the other dimensions, we develop the displacement function u; in powers of
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thickness coordinate x,. We thus write

w =Y x5u(xy, x5, ), (9a)
=Y x5yP(x 1, x5, 1), (9b)
;= Z x’gwg”(xl, X3, 1) (9¢)

n
and use the variational equation (7) to eliminate the dependence of the thickness co-
ordinate x,, which is now explicitly contained in the integrands.

Substituting the power expansions (9) in the volume integral in (7), carrying out the
process of integration with respect to x,, and then setting in the area integral, the co-
efficients of the variation du{® equal to zero, we obtain the n-triplets of differential equa-
tions:

[T+ o TE ™), ~nlT '+ T o T ")
m

G+ TORGE™)+ X = p T Buil” (10

where ( h2

, X37;, dx,,

GY = [x5tu1"%, = W2 [l sne + (= 1 Ll mipals
B2

X?l) = “ X;X" dx:,

J—w2

h 2 m+n+ 1

B, —u)—-——— [1+ cos(m+n)n];mn=0,1,2,.
m+n+1

Similarly from the surface integral in (7), after substituting the power expansions (9),
conducting the process of integration with respect to x,, and then setting in the resulting
contour integral the coefficients of the variation du{® equal to zero, we obtain

fild) = G+ Z oPGH™ (11a)

on the plane parallel faces of the plate, and
fis) = v[TP+ Zm""’ Tm+m] (11b)

on the closed contour bounding the plate. Here v, = ¢,5 0x,/0s where ¢, is the alternating
surface tensor:
The two-dimensional stress equations of motion and the boundary conditions of
various orders are then written as:
(a) Zero-order equations, (n = 0)

[T+ Lo TR+ (G + Lol G+ pX( = p ¥ Buoil™ (12a)
A = GO+ 3 PG, (12b)

S = v[TQ+ ¥ 0P TV} (12¢)
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(b) First-order equations, (n = 1)
T8+ Lol TE VL~ [T+ Lol THIHGH + TolPGl* 1+ pX{" = p T B,
m » m

{13a)
fi{4) = G+ Z oGy, (13b)
f{8) = v TP+ Y Tt Y), (13c)

andsoonforn=2234,...

STRAIN DISPLACEMENT RELATIONS

In order to be able to express the stress equations of motion in terms of displacement
components, we need the development of %7 and o in terms of displacement com-
ponents u{®. Then from equations (2) and (9), we obtam

vy = L x3{el +1 ) oo} = Z x5y57.
n

m

The nth-order strain component 77 is then defined as

P = {e+3 z o~ ™o}, (14a)

where
&7 = Hu6Y +ufl6 )+ (n+ Dl 6, +uP V8,8, (14b)
off) = H{@E —ufd®) + -+ 1)l V55—~ 8y}, (14c)

and delta with superscripts is a hybrid isotropic tensor [15].

STRESS DISPLACEMENT RELATIONS

When the material of the plate is anisotropic, and 8 the change in temperature, the
Duhamel’s thermoelastic stress-strain relations generalized for large deformations are
given by [16]+

75 = Cipu(y—0Bu) (15)
where
Cijit == Craij = Cjint
Bia = o+ o).

The coefficients c;;; are the isothermal elastic coefficients of the anisotropic material
and it is assumed that the temperature change is very small, The coefficients ay, characteriz-
ing the thermal expansion are tensors of second rank. In the case of isotropic material

+ For some critical remarks, see a paper by J. N, Goodier, Phil. Mag. 23, 1017-32 (1937).
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we find that

Bu = ady = Py,
Cijia = A0;j0u + M(Oub s+ 0ubjs) = Canij = Cjims

where a is the coefficient of linear thermal expansion. The corresponding stress-strain
relations are

Ty = A — 300)0;;+ 2u(y;; — 209;;) (16)

where 4 and p are Lamé’s constants of infinitesimal elasticity and are related to each
other through the relation A/u = 2v/(1—2v); u > 0; (34+2u) > 0; and v is Poisson’s
ratio of the material.

Now using the stress—strain relations (15) or (16), expressing y;; in terms of y{ by using

equation (9b), and using the definition of T{?, we obtain after integrating with respect to

the thickness coordinate x,, the nth-order stress—strain relations

T = C:jktZan(?("') 0 B) (17a)

for general anisotropic media, and

T8 = X Bl 03— 306)61;+ 24617 005, (178)

for isotropic media, where
0 =) x70™(x, x3, 1),
m

_ (h/2)m+"+1
™ (m+n+1)

[1+cos(m+n)n]; mn=0,1,2,....
INTERMEDIATE ORDER EQUATIONS

We will now specialize the general equations to the case when the displacement and
temperature field is taken in the form

= 4 ), (18)
6 = 609+ x,0. (18b)

Then the only strain components entering in the theory are
79 = &9 +ioPdw (19a)
PP = e+ HoP ol + ol wll) (19b)

where from (18a) and (14b, ¢)

=l e —u: - ufh:
263 = % +uf): 2013 = G0 —u); 20
268 = (s +ul)i 208 = G —ul);
268 = (L +ul); 200 = G —u);
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1) . 1 . 1y _ L (1),
O =0, o =u;
{

u
268 = @ +u); 2018 = (A —1); @

For frequencies less than the thickness shear mode it is expedient to neglect the thick-
ness stretch displacements u$!), However, for free development of Poisson’s effect through
the thickness, the strain components ¥ and 4, which are functions of u{" and its
partial derivatives, cannot be suppressed. In order that these strains may develop freely,
it is necessary that the corresponding stress resultants T} and stress couples T4 must
vanish. These conditions can thus be used to eliminate the component uf! without
actually suppressing its influence.

From equations (17) and (19), and the definition of B,,,, the zero-order stress resultant
is given by

Tﬁ?) = hCiju(?;co) - O‘O)ﬁ ) (22)

The condition T4} = 0 permits the elimination of (y3—6©8,,) from the zero-order
stress resultants, with the result

Tg,) = hgukl(yw) 098y (23a)
where g0 = giwij = & and in terms of elastic constants Ciju

8ijki = Cyja—Cij22C22k + €2222- (23b)

In the case of isotropic medium, equation (23a) reduces to
TE}” = [{"'Y(o) 9(0)(1 + V)}(‘Si i ;20 12)+(1 - V)(Y(O)“Y(zoz)axzé j2)} (23¢)

where Y0 = y‘1°1)+y‘3°§.
Similarly, first-order stress couple containing linear variation of temperature 61 is
given by

h 3
T = bk’ =64 Bw) 4)

where the first-order strain components are as in (19b). In order to allow free development
of thickness strains 74, we now set T4} = 0, and use these three equations to determine
%), which are then used in equation (24) to obtain the stress-strain relations between
the remaining components T} and (3. This process of elimination thus finally leads to

the result:

3

h
(1)
T’ = 12

Hijm(}’ﬁ) ~ 0B (25a)
where

nijkl = dijkz“ ij12d12kl tdi212

dijkl = i~ 8ij238231 82323 (25b)

ikt = Cij—Ci522€C22m - C2222-
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From equatlon (25b) we note that Hlﬂd nklu e Hﬂkl and I_‘[‘j22 = H“23 == Hijzl = (.
Therefore, TY) are zero and y4}) are eliminated from the remaining three equations of
stress—couples Effectively we are, therefore, left with the relation

3

h
Ty = E Mg, (70 —6V8,,) (26)

where Il,4,, are obtained from I1,;, by replacing the subscripts ijk! by afop.

The elimination process is not yet complete because 13} and 14}, enter in y!}) through
w$y). But we note from (21) that of) = e}). According to our original hypothesis terms
of the type e4)w), wf)el") can be neglected in comparison with products of rotation, and
therefore from (19b), we can write

Y = e+ bl + ofPel?) (27a)
which is equivalent to
P = e+ w8, (27b)

The first-order stress-couples in terms of strain-components therefore take the form:

h3
T(“ 12 aﬁcp(yu) 6(1)309)’ (283)
yf,ﬁ} = em-i-wmw‘mé,p, {28b)
Huﬂap = uﬂap—daﬁ12d120'p : d1212a (28C)
dapap = Bupop " 8ap238234p - 82323 (28d)
8apap = Capop—Cap22€220p - £2222- (28¢)

For the case of isotropic medium, IT,4,, = g,4,, (isotropic) and using the property of
fourth rank isotropic tensors, we find
TY = 12(}; [{ve‘”+(1 + VH§of) — o)} 8,5+ (1 —v)elR] (280)

where ef;) is the areal dilation of first order. In the case of orthotropy Mg,y = 8up0p

The incorrect distribution of displacements assumed in the series expansion (18),
affect the frequencies mainly through the thickness-shear strains (y4) —6'®8,,). In order
to adjust the thickness-shear frequencies to their correct value, and also to compensate
for the other higher-order terms which have been neglected in the theory, the thickness-
shear strams G5 —698,,) and (y¥}—6©B,,) are replaced by k(y5!—68, 1) and
ki3 (¥} —6®'B,3) respectively. Thus writing (y{)’—60©B;) = k7f, ;- 2)():51 —098,). in the
zero- order strain-energy density of the plate, and noting that T{) = (6W‘°’/6y‘°’
+ oW ©/5y{), we find that when shear correction is taken into account the zero-order
resultants take the form [10}]:

T = hghu(y@ — 0B, (29

where

g:"jm = kf'i'+j—2)gukzk?k+n—z),
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m = cos*(ijn/2); n = cos?(kin/2),

and no summation is implied over parenthetic subscripts.

In the theory developed so far we have assumed that elongations and shear are
negligible compared to unity, and we have imposed no restriction on the magnitude of
the rotations. When the rotations of the elements of the plate are also small, compared
to unity, further simplification can be achieved in the strain—displacement relations.t It
has been shown by Novozhilov that in this case the derivatives 4!’} and u{} can be
regarded as quantities of the same order of magnitude as Y% and yQ [13]. This then
permits us to drop all non-linear terms involving derivatives of u{%, in the strain compo-
nents p{Y and y{} defined by equations (19a) and (28b). With this additional approximation,
the strain displacement relations take the form:

19 = e+ ool (30a)
P9 = ef) = ) +ul), (30b)
Y = el = Jul)+ull), (30c)
and
¢ = HuO)+ul), 0 = 3P —u).

Now it is not difficult to verify that the six components el for n = 0,1 and the two
components €%, satisfy the relations

2

zﬁﬁ{eﬁ'}? crp+e(n) af ™ egg,ap eg:n,ali} = 0’ (313)

152iaf (1 0 © _ 1

ﬂ;Z{egﬁ)p (Zp) ap ~ €28,0p™ ap)ﬁ} =0, (31b)
where ... is the generalized Kronecker delta, completely asymmetric in subscripts and

superscripts. Using equation (30a) in (31a), it can then be shown that the strain compo-
nents y{y satisfy the relation

5220(.(0 0 0 0 0), (0
2371{?§ﬂ)op (ap).aﬂ yc(wzaﬂ Yffﬂ)ap} =26 ﬁ(w( o )) »op* (323)
In the particular case when shear deformation is neglected, () = —u$), and the equation
takes the form:
0 V] ] 0 _ 0 0
5%{?;/3).0:7 +'ysm).ali ngp)ﬂﬁ Yf,p),ap} - 25;7)”(2 ‘)113“(2 3fp (32b)

Where 5;‘; = (5aﬂ50p_5apéa[3)'

STRESS AND DISPLACEMENT EQUATIONS

When T} =0; TS)=0forn>0; TP =0 for n > 1; 45" = 0; u” =0 for n > 1;
o) ~ 0 for n > 0; w( <1 for n>0; and the only non-zero mean rotatlons are o),
the stress equations of motlon (12) and (13) take the form:

© 4 QTP (0) ©) — hi®
{TP+ QT s+ G+ p X phiil (33a)
(TO+ QTG 5+ GY+pXP = phitf), (33b)

+ Smallness of strains and rotations in comparison with unity does not imply that they are of the same order
of magnitude.

8
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3
TG — T+ G+ pX( = p’lzzu“’ (33¢)
In these equations we have neglected the projected components on the plane of the
plate of the surface loads G§) and surface moments G). The surface loads and the surface
moments are given by the relations

(") (h/z)"{rd]n.z - —1)"T,~2]_wz}.

From these equations the body forces like X{® and X" can be neglected and equation
(32b) can be combined with equation (36c) with the result:

(TG + 9T} ;+G) = phii®, (34a)

hZ
(TY+ 02T+ 08+ s o3 = oh(a9+ D) o)
The first set of two equations (34a) describe the extensional motion of the plate in its
own plane, and the third equation (34b) describes the flexural motion with rotatory
inertia included.
For anisotropic medium

0) = thﬂap(y(O) B(O)Bop)+2hg3520(e$0)—0‘0):820)9 (353)
T(O) = hg aﬂap(y(O) O(O)ﬂap)+2hg aﬁZa(e(O) B(O)ﬂza)a (35b)
3
T“) ?2 aﬁap(e(l) G(I)Bop)s (350)
and for isotropic medium these relations reduce to

TS = 2uhkl; el (36a)

‘°’ = 2uh(1 —v)"[{ vy‘°’— ol + v)0‘°’}6,,, +(1- v)y“” (36b)

TS = duh’(1—v)" [{vel — a1 +)0'V}3,5 + (1 — v)ely). (36¢)

In the case of orthotropic medium I5,, = g%psp = 8agsp aNd ghg2, is Zero and the corres-
ponding stress—strain relations can be easily written from the set of relations (35). The
strain tensors entering in these relations is defined in terms of displacements in (30).

In the case of low-frequency flexural vibrations, it is generally sufficient to neglect
extensional inertia #® and linearize the equation by dropping the term 3T} in com-
parison with T'9. In the absence of body force X” and surface loads G‘z‘?,’, it is easy to
introduce a stress function T = 8%.¢ ,, which satisfies the equation Ta‘,‘,’,’, = 0 identically.
In terms of stress function ¢ and displacements u?’; u'?, the remaining three equations
(33 b, c), in the case of orthotropy take the form:

%d).apég;(uso.; - ugl )).ﬁ + hg;ﬂlawz.ﬁ + Ggoz + pX(ZO) = pha(ZO)’ (373)
h3 h3
Egaﬂdp(“(cl.;)m - ﬂupele )) - hg;ﬂlawa + Ggﬁ) + pX(ﬂl) =pP75 12 uf'ii )’ (37b)

where ¥, = (U9} +ul’—28,,6/”), and for orthotropy g%s:, = K(s)C2p:2K@- These three
equations contain four unknowns and to obtain the fourth equation we use the identity
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(32a) by expressing the strain components y in terms of the stress function ¢. For an
orthotropic medium, the scalar invariant ¢ and the strdin components 7'} are related
to each other through the relation

h)’fz%} - he(migacﬁ + Caﬁa’pégi¢,1x (38)

where C4,, = G*°: |g,4,,]; and G**°7 is the cofactor of g,,,, in the determinant g,g,,,
so that for inner product of symmetric tensors, 2,5,,Cop1p = H04105,+ 0,,0p:) = 0,105,
Now introducing (38) in the left hand side of equation (32a), it can be shown through
proper permutation of the dummy indices that

2 0 0 ) 0 0 A
Zz;{ygzﬁ)ap Srp),aﬂ 'Yg:p).aﬁ y(w)mp} = h5$§9fail3an-+ Cuﬂxv 5;: d’dﬂu (39)

Then the remaining equation which together with equations (37a,b) constitutes the
complete system of four simultaneous equations in four unknowns, is given by

S CaperO3i piut+ hBagflo) — [(u“” U —uf)op} = (379

where
A
Ca#xvé,;g Jopin = C{:ﬁl 14’,3309 - zcaﬂl 3¢, 130p + C¢ﬁ33¢, i1gp*

These four equations for large flexural motion of thin orthotropic plates can be easily
reduced to the case when the plate is isotropic. For it can be shown that in the case of
isotropy the various constants entering in the system of equations (37) are:

8%a2P2. = 0,
8apooPap = 20(A'+ )0y,
|8aparl = 164>E(A+p/(A+2p),
Gl o G133 4 91313 63333 = 16/42(/1+;t)/(l+2/,t),
Cirng = Cy133+2C 313 = C3333 = 1/E,
Ci113 = Ci333 = 0; G111 = G133 = 0,
apap = A'0uplop+ (0 ye0p,+ 0450p0)
83pa2 = Hk(g0pokia)s
A= 2pf(A+2p); (X' +p) = p(1+v)/(1~v); E = 2u(1 +v).

The four simultaneous equations, for the case of isotropy, containing both shear
correction and rotatory inertia, then reduce to the form:

Hhus+u) 5+ 30 o005 — D) s+ G+ p XD = phil, (40a)

h3 h3
(pu‘” + A UlD — WU, + ug ) — 0P + GY + p X = p Eu}} L (40b)
O apap+ ahEOf;’g — %hEa {(u(o) uM)( u(o) (”)} o0 =0, (40c)

where 1" = A'+u; ' = pkk,.
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At extremely low frequencies, it is permissible to neglect shear deformation from the
equations of motion. This then permits us to write

(1) _ (0) —
U, = _u2,az = W,

where we have in accordance with the standard notation replaced the transverse dis-

placement 4% by w. Then in the case of orthotropy, when shear deformation is neglected,
the large deflection equations of motion, in the presence of thermal field, take the form

h3 .k
Eguﬂap(w,o'p + ﬁapg(l)),aﬁ - w,aﬂaﬁ’;d),ap + ph (W - Ew,ﬁﬂ> = F2’ (413)
5;%[Caﬂxv5:ﬁ¢.aplu + hﬂaﬂofgz) + %hw,aﬁw,op] = 07 (41b)

where F, = G+ GY ;+p(XP + X§')). In the case of isotropy,

2

h
D(vaﬂ + a(l + v)e(l))’m - W,aﬁ5;g¢,ap + ph (w'— ﬁ_w’ﬂﬂ> = F2, (423)

@ apap +AhEOQ)—ShES%wW W ,, = O, (42b)

where the flexural rigidity D = Eh3/12(1 —v?). The solution of these non-linear equations
of motion require that these be solved simultaneously for w and ¢. Once w and ¢ are
determined, the extensional displacements can be determined from the relations

helQ = h0OB,g+ CopppSoidh 1, — 3w W 4 (43a)

in the case of orthotropy, or
1 v
helQ = ah9 4,5+ % [5;{,’47,,,,, —md)’ ppéaﬁ} —3hw W 4 (43b)

in the case of isotropy. Further, once ¢ is known, the planar stress field can be easily
determined in each case from the relation T') = 85,6 ,,.

The equations of static equilibrium can be easily obtained from these equations of
motion by dropping the inertia terms. Then equation (37) yields the equation of equi-
librium of finite deflection of orthotropic plates and equation (40) gives the equation of
equilibrium of isotropic plates; both containing shear correction. If on the other hand,
shear correction be neglected, and also inertia terms dropped, then equation (41) yields
the equation of equilibrium for large deflection of orthotropic thin plates, and equation
{42) gives the corresponding equation for isotropic plates. It may be noticed that the
effect of neglecting the shear deformation results in considerable simplicity and requires
only the solution of two simultancous equations instead of four as in equation (37) on
equation (40). It is not difficult to recognize, that if we also drop thermal distribution
from equation (42), then we are led to Féppl-Karman equations of equilibrium of finite
deflection of large thin isotropic plates, [5, 6, 14]. Under similar conditions, our equation
(41) is a generalization of Foppl-Karman equation for orthotropic plates. Both these
equations are special cases of general equations (37) and (40), for orthotropy or isotropy,
containing shear correction and allowing for a thermal field, rotatory inertia and flexural
motion. The correction factors &, have the same meaning as those used by Mindlin [10].

Concerning the system of equations (37), it can be seen that we require initial values
of uP, ul, ¢ and of ¥, u'?, ¢. In addition to the initial values, we find from the second
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of equations (12) and (13), that at every point on the two surfaces of the plate, either
surface forces or surface displacements be specified from each of the following three
pairs

G oru®; G oru; GY)  orul

Furthermore, the third of equations (12) and (13) show that the system of partial
differential equations to be solved is subject t& the following edge conditions

F6s) = v, TY or u® = ULXs),
F96) = vl TH+oQTY) o uf) = ULs),
Ss) = v Ty or ul!) = UNs),

where the displacements U{®)(s), U{!)(s) and the components of the applied forces f{%)(s) ds
and applied moments f{!)(s) ds, are known functions of arc parameter s of the bounding
curve C.

Writing v = g5, dx,/ds; T'Q = 857¢ ,, it follows that

g s =IOE) 0Ty =] F(5)d5 = 806

Thus in terms of stress function, ¢ ; must be a known function of s. In fact knowledge
of ¢ 4(s) permits one to determine the’ values of ¢(s) and its normal derivative on C.
It is understood throughout that when the region is multiply connected, the boundaries
C consist of (n+ 1) simple and smooth curves C; with C = C,,.(+C;+ ... +C,.
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Zusammenfassung—Mit Hilfe der nichtlinearen, dreidimensionalen Schwingungstheorie fiir die endliche
Elastizitit wird fiir anisotrope, diinne Platten ein zweidimensionales Wiarme—und Bewegungsgleichungs-
system abgeleitet. Dabei verwendet man die variationsrechnerische Kirchhoff'sche Methode und eine andere
Methode, welche sich auf die in Dickekoordinaten ausgedriickte Entwicklung der Verschiebefunktionen
griindet. Die Nichtlinearitdt wird auf der Grundlage geometrischer Erwdgungen ausgedriickt, indem man bei
der Definition der Spannungstensoren die Drehwinkel in Betracht zieht, wihrend man die physikalische
Linearitit mit Hilfe des auf grosse Deformationen verallgemeinerten Duhamel’schen Gestzes der anisotropen
Thermoeleastizitit ausdriickt.

A6crpakT—CHCTeMa IBYXMEPHBIX TEPMHYECKUX YDABHEHHH ABIKEHMS [Uisl HSM30TPOMHBIX TOHKUX TLIACTHH,
MOMTy4aeTcA M3 HeluHelHOM TpexmepHOM XoebaTeNbHON TEOPHM KOHEYHOM YNPYrOCTH, NPHMEHEHHEM
METOOB OCHOBAHHBIX Ha DA3JIOXKEHMM (PYHKUMM CMEINEHHS B YCIOBHAX KOODIAMHAT TOJIUMHBI, & TaKKe
papuanmonHoro Merona Kupxrodda. .

Henune#HOCTH, OCHOBAHHAS HA T€OMETPHYECKHX COOOPAKEHHAX, BHIPAKACTCA TeM, YTO NPHHUMAIOTCS
BO BHMMAHHE YIJIbl BPALIECHHA B ONPEAENICHUH TEH30pa nedopmanum, B TO BpeMs kak Quanyeckas JHHEH-
HOCTh BBIPAXAaeTCA MPHMEHCHNeM 3akoHa Jioramens o6 HeM30TPONHOM TEpMOINTACTHYHOCTH 0606menHoR
s Gonpmux gedopmanmii,



